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A theory for the generation of aerodynamic sound, stated in terms of con- 
vected simple sources and dipoles, is presented. The sources are fotmd to 
depend upon convective derivatives of the hydrodynamic pressure within the 
turbulent source region. The results are similar to earlier efforts involving 
simple sources, sometimes called dilatational sources. The results are modified 
for effects involving measurements on moving flows. The theory shows 
explicitly the refractive effects of shear flow within the source region, as well 
as of temperature changes (if any) within the source region. The oscillating 
cylinder problem is discussed and the results of the present theory are found 
to agree with those obtained by Lauvstad using a matched asymptotic 
expansion for the same problem. The theory is used to predict the temperature 
dependence of sound power for hot jets. 
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I .  I N T R O D U C T I O N  

Lighthill  a-3~ formulated the classical theory of aerodynamic sound by 

man ipu la t ion  of the equat ion  of cont inui ty  and  the Navier-Stokes  equat ions 
governing fluid flow. The equat ions are treated in such a way as to form a 

wave equa t ion  for the fluid density on the left side and  to place all nonl inear ,  
viscous and other terms on the right side. Thus, beginning with the equat ion 
of continuity,  

(~p/~t) + v .  (pv) = 0 (1) 
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and the Navier-Stokes equations 

(3/~t)pvi + (3/~xj)(pviv~ + PiJ) = 0 (2) 

with the fluid stress p~j = p3~j -- ~i3 , where ~7 is the viscous stress, one finds 

(~2/Ot2)p --  aoW2p = (82/~xiOxj)T~j (3) 

In Eq. (3) the source term Ti; is defined by 

Ti j  = pv iv j  @ P i j  - -  ao2p~iJ (4) 

The notation used here is common in the literature of aerodynamic sound 
(see, e.g., Refs. 1-3). In producing the wave equation (3), Lighthill subtracted 
the term aoW2p from both sides of the equation. This term involves the 
quantity a0, which in applications is taken to be the ambient value of the 
speed of sound. However, it is interesting to note that (constant) a0 is quite 
arbitrary in the formulation. The answers obtained would be correct for any 
choice of a 0 . 

Lighthill continues the development by solving the wave equation (3), 
following standard methods, and obtains the result for density changes 
within the medium written in terms of other fluid mechanical field quantities 
which are assumed to be known. Assuming that the fluid field quantities 
are known is technically equivalent to assuming knowledge of the full solution 
to the problem. Detailed information concerning the field quantities is 
usually not available. Following Lighthill, we are almost always driven to 
making estimates of the radiated sound. [It is relevant to observe that (3), 
of course, is not a full statement of the problem, being one scalar equation 
relating a number of unknown field variables.] 

Curle (~) extended Lighthill's development to the situation where solid 
boundaries lie within the sound-generating, turbulent region. Starting from 
(3), one finds 

1 82 Tij] dy 
P - P~ - e~ao2 f~ [ Oyi ~y j r 

1 f 8p 8r 8r 8p 
[r-1 ~nn + r-2 ~ P §  (a~ ~n T/-] dS(y) (5) + 

L 
where 

r ~ Ix -- y I (6) 

with x the field point. The square bracket [ ] indicates that one should use 
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the retarded time: t - -  r /ao.  The first term in (5) gives mainly the "volume- 
sound," and the second gives the surface-sound. Integrating by parts and 
using (2), Curle, assuming S moves, at most, parallel to itself, found 

1 ~2 f~ 1 ~ f~ 
P -- '~176 -- 4~rao 2 0 x i  Ox~ [r-~Tij] dy - -  4zrao~ ?xi  [r-lPi] dS(y) (7) 

with Pi the components of the force per area exerted on the fluid by the solid 
boundaries. 

In order to proceed, it is necessary to estimate the source terms. Lighthill 
does this and obtains for the intensity of the radiated sound the expression 
(which is typically valid for small-Mach-number flows and which is most 
often used for subsonic flows generally) 

Iav = KpoVoSaoSD2x -~ (8) 

where D is the characteristic length (diameter) of the jet and K ~-~ 10 -5, with V 0 
the jet  speed. This is the average intensity at a great distance x. It may be 
said to arise from a combination of quadrupole sources; the source term in 
the volume integral in (5) is a quadrupole. 

Curle proceeds similarly and obtains an estimate for the surface-sound 
field intensity. At frequencies low enough so that the wavelength is large 
compared with objects which are present Curle finds 

L ~ poVo~ao~D~x -~ (9) 

This is a dipole-generated sound. The estimate is for the second term in (7). 
In Curle's expression the dipole nature of the sound source leads to an 

expression for the sound field intensity proportional to V0 G plus a volume 
source proportional to V0 s. 

These estimates are carried out in typical fluid mechanical ways based 
upon the characteristics appropriate to large-Reynolds-number flows. 

It is the purpose of this paper to discuss an alternative formulation of 
aerodynamic sound theory based upon standard fluid mechanical approaches, 
which will express the radiated sound in terms of (convected) simple sources 
and dipoles within the turbulent volume of the fluid. This alternative discus- 
sion has been presented in part in earlier works. (5-7) It is known to be 
equivalent to Lighthill's treatment. The equivalence is discussed in Appendix 
C. It will be seen that the sources depend upon material derivatives of 
quantities within the flow and that any refracting characteristics, due to flow 
shear or due to flow temperature changes, are made explicit. In the classical 
treatment such refraction effects are, of course, implicit within the expressions. 
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2. T H E O R Y  O F  A E R O D Y N A M I C  S O U N D  G E N E R A T I O N  I N  
TERMS O F  SIMPLE S O U R C E S  A N D  D IPOLES 

We restrict the discussion to fluid flows where compressibility effects 
are slight, that is, where fractional density changes are small. The results 
presented here should apply to virtually any situation involving liquid flows, 
since in such a case fractional density changes are typically extremely small. 
We shall expand field quantities about what we shall call the "nearby in- 
compressible flow" quantities. Suppose we are given the velocity field at a 
given time for a slightly compressible flow. We search for the incompressible 
flow field, satisfying any boundary conditions which may be imposed, which 
will minimize the square of the difference between the actual, slightly com- 
pressible flow field and the searched-for incompressible flow field. (This is 
reminiscent of--though here slightly more quantitative than--approximate 
treatments of aerodynamic problems for subsonic flow where one assumes 
that the fluid flow itself is incompressible. Such approximate treatments are 
of course common enough in airfoil lift and flutter theory.) After sufficient 
time the slightly compressible flow will wander from the neighboring in- 
compressible flow. For homogeneous turbulence this (dimensionless) time 
is of order M -2, where M is the Mach number; the characteristic time is of the 
order of the turbulence scale length divided by the velocity fluctuation. 

We proceed by expanding all field quantities about their incompressible 
values. First adopt the notation wherein we write the exact compressible 
field quantities in (1) and (2) with an asterisk. Represent the nearby in- 
compessible flow quantities with a subscript zero. Define the "passive," 
nonpropagating hydrodynamic density change pl : 

Pl ~ ao~Po (10) 

As suggested, P0 is the incompressible pressure. The a0 is conveniently 
taken to be the local value of the speed of sound. This local value may, of 
course, be a function of position if temperature changes are sufficiently 
great. We further suppose that the turbulence is statistically stationary. It is 
possible to define a time-averaged temperature within the turbulent region 
and we suppose that a 0 is the speed of sound corresponding to that average 
temperature. We shall neglect effects caused by fluctuations in the local 
value of the temperature. Complications, if any, arising from such tempera- 
ture fluctuations could be treated in a development parallel to the present 
one, though it would, of course, be more complicated. Following the above- 
described notation we write the field quantities as follows: 

p* = p 0 + p l + P ,  v* = v 0 §  P* = P 0 + P  (11) 

Now substitute the definitions (11) in (1) and (2), remembering that the 
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starred quantities are the complete field functions in this notation. On 
substituting these expressions and recognizing that the incompressible flow 
quantities satisfy (1) and (2), we obtain for (1) 

(~p/~t) + p0 V .  v + %-  Vp = --(D/Dto) pz + H.O. (12) 

where D/Dto = %" V is the substantial derivative following the nearby 
incompressible flow. Take (2) in the form with the density outside the 
derivatives and with the viscous force shown explicitly, and substitute (11) 
to find 

po(~/~t) v + p(~/~t) v o + po[Vo �9 Vv + v" Vvo] + pv o �9 Vv o 

+ Vp --/x[V2v + �89 �9 v] : --pz(D/Dto)V o + H.O. (13) 

Here H.O. represents terms at least quadratic in v, p, p, and Pi �9 In Appendix 
A we discuss the order of magnitude of the various held quantities involved. 
It  is found there that 

Pl/Po ~ V/Vo ~ P/Po ~'~ MS 

within the turbulent flow and that P/Po "~ M4 in the same region. Con- 
sequently, terms designated by H.O. are of higher order in the (assumed 
small) Mach number than are retained terms and are neglected. We have 

(D/Dto) p + po V" v = --(D/Dto)Pl (14) 
and 

po(D/Dto) v + p(D/Dto) v0 + poV" Vvo -1- Vp 

--/~[V~v + ~VV. v] = --pz(D/Dto)Vo (15) 

Equations (14) and (15) are seen to be equations for the propagation 
of  sound in moving media, where the motion is v0, with sound sources of 
two types: first, a simple source (a mass source) of (convected) strength per 
unit volume, 

--  (D/Dto) Pl =-- --  (D/Dto) ao2Po (i 6) 

and second, a dipole source per unit volume 

--pl(D/Dto) v0 = --ao2Po(D/Dto) Vo (17) 

The moving medium in general causes refraction effects controlled by the 
incompressible flow velocity vo as seen in the left sides of (14) and (15). 
Suppose that in some problems the incompressible velocity is composed of 
a mean velocity (averaged in time) and a fluctuating velocity given by 

v 0 = rr 0 @ v 0' (18) 
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such that the mean velocity is considerably larger than the fluctuating 
(incompressible) velocity. Then we can write (14) and (15) in the approximate 
form 

(D/Dto) p + po V-  v = - - (D/Dto)pl  (19) 

and 

where 

po(D/Dto) v + p(D/Dto) fro + poV" fro + Vp 

--/z[V2v + �89 v] = --pl(D/Dto)fro (20) 

D / D t  o =_ (b/at) + re o �9 V (21) 

To complete the system of equations, we need the usual relationship 
between density and pressure change given in situations where the changes 
are approximately adiabatic: 

p = ao2p (22) 

To simplify discussion, we can usually neglect the effect of viscosity on the 
sound field in (20). Further, we can treat the refractive effects of the moving 
medium (and variable a0) as a separate problem and neglect v0 terms in the 
left sides of (19) and (20) (and let a0 be constant)? In Appendix B we discuss 
the effect of hot (or cold) jets on the sound power produced. 

Eliminate the term V �9 v between (19) and (20) and use (22) to find the 
wave equation with source 

9 2 

Ot 2 P - -  V2aoe p - -  + oo ,0 tao  0 + ~ 
(22') 

As it should, the simple source term, the first term on the right side of (22'), 
gives no sound for either a frozen, stationary flow (vanishing material 
derivative) or a flow which is stationary in the laboratory frame of reference 
(vanishing time derivative). The same is true for the dipole source term when 
the wave equation with source, (22'), is solved in the usual way (see Ref. 1). 

The boundary conditions for the field variables at a rigid boundary or 
one moving parallel to itself are seen from our definitions to be 

v~ = 0 (23) 

This is the appropriate condition for the inviscid sound problem. 

3 Strictly speaking, the second term in (21) should, for consistency, also be dropped; we 
retain it for its moving-source suggestive characteristic. 
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Consider a problem with rigid boundaries. To solve (22') [or the less 
restricted (19) and (20)], we use the boundary condition (23) and the standard 
methods of acoustics (see Ref. 4). 

An estimate of the sound field intensity from (22') following standard 
methods gives 

I ~.~ poVoSaoSO2X -2 (23') 

This is the same as Lighthill's result (8). Of course, there are differences of 
method of treatment as well between the two theories. We discuss the 
complete equivalence of results of the two theories in Appendix C for 
simplified aerosound problems. 

The source terms considered here have a simple physical explanation. 
Suppose that we deal with an aerodynamic noise problem involving a jet 
source. Suppose that near the exit of the jet at one instant we have a region 
in which the hydrodynamic pressure is larger than the ambient value of the 
pressure. Enclose this positive pressure region with a control surface attached 
to the (incompressible) fluid motion. The pressure is higher in this region. The 
density is similarly higher by approximately Pl �9 This means that the control 
volume surrounded by the control surface has contracted with respect to 
its value just upstream. 

A little farther downstream the pressure and density reduce within the 
control volume and the control surface expands. This constitutes a pulsation 
for the control surface whose normal component of velocity can be used as 
a boundary condition describing the radiation of sound form the control 
volume. The force as source acts similarly but produces dipole sound. The 
control surface encloses a region of fluid on which is exerted a force which 
is of the amount given by the right side of (20). This force acting on the 
control volume fluctuates as the hydrodynamic pressure and its attendant 
density change fluctuates while the control volume moves downstream. This 
fluctuating force constitutes a dipole sound source within the flow. These two 
sources, a simple source and a dipole source, generate sound which pro- 
pagates through the shear region for the incompressible flow as given by 
(19) and (20). The sound beam refracted by that shear region follows the 
usual rules of sound propagation in moving media. If  there were a tempera- 
ture variation within the nearly incompressible flow, this would likewise 
refract the propagating sound. Its effect would appear when one substituted 
for either the pressure or the density using (22). Ribner and MacGregor (8) in 
their experiments dealing with refraction effects within turbulent jets have 
found that the source can be ascribed to a combination of simple source and 
simple dipole in amounts of about the same order, though these authors 
explain their results from a different viewpoint. From (22') we see that the 
ratio of sound intensity generated by the convected simple source, the first 

822/8/2-7 
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term on the right side, to that from the convected simple dipole is ~r-~, 
where M is the mean Mach number, ~r = Vo/a ~ .4 

3. D I S C U S S I O N  OF T H E  O S C I L L A T I N G  C Y L I N D E R  PROBLEM 

Consider now the problem of a circular cylinder oscillating sinusoidally 
about its fixed axis. This is a problem which can be solved in closed form 
for a cylinder in a viscous, incompressible fluid. ~9-nl We apply the above 
simple source/dipole theory to this problem in the next section. The solution 
to the cylinder problem gives for the azimuthal velocity component (others 
vanish) 

v0 = V0 Re v~(y, t) (24) 

with 

and 

v~ = e-~tH~')[(ioJ/v) 1/~ yl/H~l)[(ioJ/v) 1/~ al (25) 

f ~  ,-1 2, , t) dy'  (26) Po = --Po y Voty ,  

Re means take the real part. We have chosen the pressure reference at 
infinity; co is the angular frequency of the oscillating cylinder and H~ 1) is the 
first-order Hankel function of the first kind. Also, a is the radius of  the 
cylinder and V0 is the amplitude of the speed of the cylinder surface. 

The special character of this problem should be emphasized. It is a 
viscous flow so, e.g., the pressure for thin boundary layers is of order 
(v/a%J)i/2poVo 2, and thus is much smaller for large Reynolds numbers than 
pressures in more general problems. 

4. A P P L I C A T I O N  OF T H E  SIMPLE S O U R C E / D I P O L E  
T H E O R Y  OF A E R O D Y N A M I C  S O U N D  T O  T H E  
O S C I L L A T I N G  C Y L I N D E R  PROBLEM 

Consider the application of the aerodynamic sound theory represented 
by (14) and (15) to the oscillating cylinder problem. We suppose now that the 
fluid around the cylinder is slightly compressible with sound speed a0. For 
purposes of this theory-check we ignore fluid instabilities. We also neglect 
refraction effects caused by sound propagation through the incompressible 

To see this, first solve the wave equation with source, (22'), as in obtaining Lighthill's 
equation, first term of (5). Then integrate by parts, converting the divergence operation 
of the second source term in (22') to ao 1 8/Ot. It is then evident that the ratio of the 
second source integral to the first is of order of magnitude 2~r. The ratio of sound in- 
tensities is the square of this quantity. 



On the Simple-Source Theory of Sound from Statistical Turbulence 205 

flow field. Likewise, as above, we neglect the effect of viscosity on the pro- 
pagating sound. Furthermore, we adhere to the requirement that the Mach 
number of the flow field be small. The result is that (22') becomes 
approximately 

(82p'/St 2) -- a0W2p ' = --(82/8t2) ao2Po (27) 

with P0 given for this oscillating cylinder problem by (26). In this approxi- 
mation the source term is precisely the same as that proposed on somewhat 
less complete grounds in Ref. 9. For the purposes of this section we have 
replaced p of (22') by p' as seen in (27). From the nature ofpo it is seen that 
aside from possible transients (which we neglect by requiring that we examine 
the system only after it has been turned on for a considerable time), there is 
but one angular frequency in the sound field and it is 2~o. Then write 

p' -= Re pe -2i~ (28) 

By simple manipulation of  (27) using (24)-(26) and (28) and substituting 
for the source term of (27) we obtain 

(V 2 -}- 4kZ)p = 2pooa2ao 4 f f  v~2(y ', O) y,-1 dy' (29) 

where k : ofla o . The boundary condition is the familiar one for acoustics 
given in (23) and is to be applied at the surface of the cylinder. To simplify 
the discussion, we apply some restrictions as follows: 

@/09) 1/2 < a ~ 27r/k ~ x (30) 

that is, we suppose that the viscous layer about the cylinder has a thickness 
which is much less than the radius of the cylinder, which in turn is much less 
than the sound wavelength. Furthermore, we suppose that the field point 
lies in the radiation region: x, the distance of the field point from the cylinder 
axis, is much greater than the sound wave length. From the nature of the 
incompressible solution given in (24) and (26) we see that the sound sources, 
the right side of (27), are confined to a region small compared with all the 
other lengths in the problem. In such a case the effect of the cylinder boundary 
upon the propagating sound is merely to double the source strength. We can 
use the free-space Green's function (remembering the source doubling) 

(1/40 H~l)(2kr) (31) 

and ignore the presence of the cylinder. Thus, we solve the Helmholtz 
equation with source (29), use the Green's function (31), double the source 
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strength to account for reflection at the rigid cylinder surface, substitute 
the resulting expression for O in (28), and use the asymptotic expansion for 
the Green's function to obtain for the sound field density change 

\ c o x  I \ a o / a o  2 
(32) 

Lauvstad ~12) has used a matched asymptotic expansion method to 
calculate the sound generated when an oscillating cylinder is immersed in a 
slightly compressible fluid. His result, given in his equation (43) is, except 
for the sign and a factor of two, exactly the same as the result obtained here 
in (32). The method of the matched asymptotic expansion is widely believed 
to be the "correct," though often complicated, method for calculating such 
mixed regime problems as are typical of aerodynamic sound. It is concluded 
that the simple source theory outlined above has correctly calculated the 
generated sound for this oscillating cylinder problem. 

It is possible to calculate the generated sound using the physical model 
of the generation process discussed above. That is, when the hydrodynamic 
pressure P0 increases there is a corresponding increase in density near the 
surface of the cylinder. This causes, because of conservation of mass, a 
contraction of the edge of the boundary layer. There are opposite changes 
which occur when the hydrodynamic pressure decreases. This pulsation of the 
edge of the boundary layer can be used as a boundary condition for the 
normal component of the velocity for the generated sound field. If one 
pursues a treatment of this kind, he obtains again the result (32) for the 
sound field density change. 

5. C O N C L U S I O N  

One wayto state the purpose of subsonic aerosonic theory is the following. 
Consider a subsonic, turbulent jet (this is often extended to transonic); 
we wish to estimate the intensity of sound generated, through the use of 
essentially incompressible quantities. If we are driven to examine in detail 
the complicated compressible characteristics within the source region, the 
problem frequently becomes intractable. But to make such sound estimates, 
it seems desirable to place some emphasis upon the compressible character- 
istics of the fluid. This has been done here. 

It has been shown that it is possible to formulate aerosonic theory in 
terms of a simple physical model. The simple source characteristic of the 
sound-generating region can be thought of as follows: Increases in the total 
hydrodynamic pressure within the jet cause what above have been termed 
passive changes in the density. These density increases lead to a contraction 
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of a control surface around the positive pressure region because of conserva- 
tion of mass. At a later instant all changes reverse somewhat downstream. 
Thus, if we think in terms of a control surface, it has been argued that the 
pulsation caused by hydrodynamic pressure changes of such a control 
surface become the cause of sound radiation. There is a similar dipole source 
term due to forces arising from density changes Pl �9 Both of these source 
mechanisms are convected in the jet. The simple source per volume is seen 
from (22) to be approximately of order, except for a constant, 

poVo4/ao2D 2 (33) 

The theory is applied in some detail to the oscillating cylinder problem. 
Recent work by Lauvstad m~has led to the calculation of the actual radiated 
sound for a slightly compressible fluid in the oscillating cylinder problem 
through the use of the method of matched asymptotic expansions. The 
theory described in the present paper, called the simple source/dipole theory, 
is used for the cylinder problem and it is shown that one obtains the sound 
intensity predicated by Lauvstad, except for a constant. 

It would be interesting to apply these various methods to some other 
problem which can be calculated analytically. One which has some appeal 
is that of a pulsating sphere in an infinite fluid. 

A P P E N D I X  A .  E S T I M A T E S  O F  F IELD Q U A N T I T I E S  I N  T H E  
S O U R C E  R E G I O N  

It is our purpose here to estimate in typical situations the orders of 
magnitude of the field quantities Pl , /9, and v. First of all consider Pl defined 
in (10). If  we suppose, as is the case in typical applications, that the pressure 
P0 is of order p0v02 (within the turbulent source region), we have the familiar 
result 

Pz ~'~ poao2Vo 2 (A1) 

that is, pl/Po ~ M2. Of course, it is true that in some special flows the pressure 
is not given by the estimate as suggested here. For example, the viscous flow 
about the oscillating cylinder discussed in this paper has a pressure which is 
also dependent on the viscosity. 

Consider the orders of magnitude of the sound field quantities p and v. 
First, p can be obtained for our purposes from (22'). Suppose we take as 
typical source term --(~2/~t2)pl. Estimate the density change p resulting 
from this source term. Solving (22') using this part of the source, we obtain 

p(x, t) = --(4zra0~) -1 (~2/~t2) f r-l[po] dy (A2) 



208 W . C .  Meecham 

so the dependence upon Mach number is given by P/Po ~ M4.  For the 
purpose of this estimate we restrict ourselves to problems involving free 
turbulence. Using the relationship given in (22) connecting p and p, sound 
field quantities, we have from (A1), 

P/Po ~'~ M 2  (A3) 

as suggested in the theory section above. To estimate the sound field velocity 
v, we can use the ordinary linearized acoustic equation obtained from (20), 
dropping the refractive terms involving vo. Comparing the lowest-order 
velocity term with the pressure term from that equation, we have 

Po Ov/Ot ~ - - V p  ~ --Va02p (A4) 

Use for the time derivative the estimate rolL, where L is the scale of the 
turbulent process. Observe that the order of magnitude of the gradient has 
two possible values depending upon the nature of the problem and the 
region of the field which is being examined. The gradient can be order L -1 
or of order k/27r: 

V / V o ~ . , M  ~ or M 3 (A5) 

using again the estimates just discussed for the characteristic frequencies for 
the turbulent process. Thus, V/Vo is at least as small as M 2, as proposed in 
the text. 

A P P E N D I X  B. H O T  JET A E R O S O U N D  

One of the main applications of aerosonic theory is to the problem of 
sound production by jet engines. Evidently, the exhaust from such engines is 
typically at higher temperature than the surrounding air. Thus it is of interest 
to determine the dependence of sound production upon the temperature of 
the jet. As discussed, in the typical application we are presented with a 
convected simple source contained within the region of higher temperature 
(and consequently higher sound speed). Suppose that the sound speed and 
density in the source region are ao and Po �9 We know, neglecting differences 
in gas composition (molecular weight) between the jet exhaust gases and 
the ambient, external atmosphere, that 

ao2/a~ 2 = To /T  ~ (B1) 

Here To is the (absolute) temperature inside the jet and al and T1 are respec- 
tively the speed of sound outside and temperature outside the jet. For this 
discussion we neglect the effect of mean flow (moving sources) on the aero- 
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sound; in this connection, see Lighthill. TM We further suppose that the 
fluctuation Mach number is small, so that the simple source of the radiated 
sound may be approximated by --(~2/9t~) (po/ao2). Thus the resulting wave 
equation with source is given approximately by 

( 32p/ 3tz) --  a~ZV2p ~ -- (  3z/ 3t~)(po/ao 2) (B2) 

where P0 is approximately the hydrodynamic pressure inside the jet, some- 
times referred to as the "pseudosound pressure" [see (22')]; other terms are 
of higher order. The simple source responsible for (B2) is given as the right 
side of (19); it is --(D/Dto)pa. Let tS~ be the ambient density outside the jet. 
For our low-frequency problem the  amplitude of the radiated sound is 
increased by a factor Pa/po because of the increase in density going from the 
the hot jet to the exterior. We modify (22'), renaming the external ambient 
speed of sound a~ and recognizing that the (passive) density change pl in the 
jet is given by ao2Po, where a0 is the local value of the speed of sound within 
the source region (within the hot jet). 

Proceed now to estimate the sound power radiated by the hot jet. We 
consider low frequencies (wavelength large compared with the jet size), so 
we may neglect refraction effects. The static pressure within the jet is of order 

Po ~'~ poVo 2 (B3) 

where P0 is a density within the hot jet and v0 is the rms velocity fluctuation 
within the jet. The time derivative is of order vo/D, where D is the diameter of 
the jet. Other estimates are made in the usual way (see Ref. 3) and one obtains 
for the total radiated sound power the expression for real, hot jets 

P = K( f i zvoSA/a lS ) (a1 /ao)  4 (B4) 

with A ----- 7cD2/4; Vo is the jet exit speed, where the constant K may be taken 
to be approximately 3 • 10 -5, supposing that the relative turbulence intensity 
of the hot jet is held constant or is independent of the temperature of the jet 
for the same flow speed. Note that the density effect in the pressure is cancelled 
by the density effect on the radiation efficiency described above. Using (B1), 
Eq. (B4) can be written (with tSz the ambient density) 

and so (B4) becomes 

po/~, = T1/To (ns) 

p = K ( ~ l v o " A / a 1 5 ) ( r l / T o )  ~ 

If the turbulence intensity level is held constant within the jets, two jets of 
different temperatures but the same flow speeds give a radiated sound power 
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inversely proportional to the square of the absolute temperature of the jets. 
It is interesting that for jets for which these parameters are held constant, 
the hotter the jet, the less the sound produced. 

A P P E N D I X  C. C O M P A R I S O N  OF T H E  SIMPLE-SOURCE 
T H E O R Y  W I T H  L I G H T H I L L ' S  T H E O R Y  OF 
A E R O D Y N A M I C  S O U N D  

The equivalence of the simple source theory given in this report to 
Lighthill's presentation has been shown previously (see Refs. 5 and 6). It 
is nevertheless interesting to emphasize in a different way the relationship 
of the two theories. 

Begin with Lighthill's equation for the source of aerodynamic sound, 

(a2/at2)p - -  aoW2p = (a~/axi 8xj)T~s (C1) 

where 

Ti~ = (Do @ P) viv~ @ Pit - -  ao2p 8it (C2) 

and 
P/~ = P 3/t -- ~7/t (C3) 

The last term is the viscous stress. Here P0 is the average density, and p is 
the density change. 

We shall consider here for simplicity an aerodynamic sound problem 
in which the jet is at approximately the same temperature as the ambient 
fluid. We neglect the effect of source motion. Furthermore, following Lighthill 
we may reasonably suppose that the viscous stresses are usually negligible 
in the sound production process. We have, accordingly, for the sound source 
tensor the expression 

Tit ~--_ poViVt + P 8ij - -  ao2p 81j (C4) 

We are to suppose that the velocity fluctuations are small compared with the 
speed of sound a0 within the jet. The adiabatic relation for pressure and 
density changes is 

p = ao2p (C5) 

We show that there are two ways of pairing the terms of the source 
(C4) to be substituted in (C1). Lighthill's procedure for obtaining the source 
term is to use (C5) and obtain the approximate expression, right side of (C1), 

(~2/Ox, ~x~) poViV~ (C6) 
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Alternatively, for small Mach numbers we can use the approximate in- 
compressibility of the fluid within the source (jet) region, taking the diver- 
gence of (2), and find that the quadratic velocity term cancels the pressure 
term when substituted in the right side of (C1). Paired in this fashion, we have 
for the wave equation with source the modified version of (C1) under restric- 
tions discussed here 

(~2/ ~t2) p - -  a0W2p ~ --a0W2pa (C7) 

recognizing that the density change in the source region is approximately 
p~ = ao2po [see (10)]. Equation (C7) may be written under our restrictions as 

(~2/~t2) p - -  aoW2p ~ --V2po (c8) 

Solving (C8) following Lighthill, we find in the usual way that in the 
distant, radiation region the source term per volume is approximated by 

_ ao2(~ 2/0 t 2) Po (C9) 

the :result obtained in (22') for low-Mach-number flows [or see (27)]. 
In low-Mach-number flows, it is seen that there are at least two ways 

of  combining cancelling terms in the source in (C1) and (C2). If  the pressure 
change is cancelled against a02 times the density change, one obtains Lighthill's 
estimate of the source term involving the double divergence of the velocity 
fluctuations. On the other hand, if the approximately incompressible flow 
equation is used, the first two terms of the source Tij cancel upon substitution 
in the right side of (C1) and one obtains the simple-source version of the 
theory discussed here. A final note is in order. From (C8) we see that the 
source may be obtained from the second space derivative of the pressure in 
the jet. The source may then be said to be a combination of (longitudinal) 
quadrupoles. The combination is, however, such as to give in the idealized 
case a spherically symmetric radiation pattern rather than the cloverleaf 
pattern expected from one isolated quadrupole source. 
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